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pseudo atoms in which the atomic electron-density 
distribution is written as the sum of the free atomic 
electron-density distribution plus an expansion into 
deformation functions with Slater-type orbital radial 
dependence. 
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Abstract 

A model of crystal defects is developed to describe 
the diffraction of X-rays from imperfect crystals con- 
taining defect surfaces and crystal grains. The model, 
which is based on continuum theory for an isotropic 
homogeneous elastic medium, leads to a stochastic 
first-order differential equation, known as a Langevin 
equation. The solution of this equation is used to 
derive a correlation function for the strain-dependent 
term in the formula for the crystal reflectance. A 
consequence of the model is that the kinematic reflec- 
tivity of an imperfect crystal is given by the convo- 
lution between the perfect-crystal reflectivity and a 
function that transforms between a Gaussian and a 
Lorentzian depending on a correlation length in the 
crystal. 

Introduction 

X-ray rocking curves obtained from thin crystalline 
films or superlattices may show complicated features 
that are characteristic of the correlations between the 
crystal structures in the films. However, in the pres- 
ence of defects causing severe distortions, many of 
the features are lost and the result is usually a broad 
Gaussian-like curve, the width of which is taken as 
a measure of the quality of the crystal. The loss of 

structure in the rocking curve can be interpreted as 
a loss of information about the nature of the crystal, 
which suggests that it should be possible to model 
such a curve with only a few parameters. For example, 
the theory of X-ray diffraction by Zachariasen (1967) 
only involves the size of the mosaic-crystal grains and 
the half-width of the distribution function for the 
grain orientations. The statistical theories of X-ray 
diffraction by Kato (1980) and Becker & A1 Haddad 
(1990) contain two correlation lengths that relate to 
the statistical nature of the crystal imperfections. 

Davis (1991) suggested that a first-order stochastic 
differential equation could model the effects of a class 
of crystal imperfections on the strain-dependent term 
in the equation for the crystal reflectance. This model 
was used to derive a partial differential equation 
describing dynamical diffraction in a crystal contain- 
ing point-like defects and crystal grains that are mis- 
oriented with respect to the perfect lattice. 

In this paper, the first-order stochastic equation is 
derived from continuum theory for a homogeneous 
isotropic elastic solid containing defects. This 
equation is related to the Markov process used by 
Becker & AI Haddad (1989) to derive an order param- 
eter for their dynamical theory and it involves param- 
eters similar to those in the mosaic-crystal theory of 
Darwin, as used by Zachariasen (1967). The solution 
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of the stochastic equation leads to a correlation func- 
tion that, together with an equation for the crystal 
reflectance, provides a kinematic description of X-ray 
diffraction from the imperfect crystal. The reflectivity 
is obtained as a convolution between the perfect- 
crystal reflectivity and the Fourier transform of the 
correlation function. The properties of the convolving 
function are discussed. 

Crystal reflectance 

A simple formula for the crystal reflectance can be 
derived from the Takagi-Taupin equations (Takagi, 
1962, 1969; Taupin 1964), which describe the dynami- 
cal diffraction of X-rays from a distorted crystal. By 
projecting the propagation paths of the transmitted 
and the diffracted waves onto some coordinate axis 
in the crystal, such as one parallel to the surface 
normal of the crystal with the coordinate t, the reflec- 
tance R(t)  can be defined as the ratio of the diffracted- 
and transmitted-wave amplitudes at t. This is a com- 
plex quantity since it contains information on the 
relative phases of the waves. Because the transmitted 
and diffracted waves travel along different paths in 
the crystal it is necessary to assume that the crystal 
properties are constant over the plane at fixed t. Then 
a first-order differential equation for the reflectance 
can be written, 

dR/ dt = i o t ( x  h -2/3R + X_hR2). (1) 

Here a=--Trk/yh, with 1 / k = A  the X-ray wave- 
length; yo and Yh are the direction cosines of the 
transmitted and diffracted waves with respect to the 
coordinate axis; Xh = CX'h and X-h =--C(yh/Yo)X'h, 
where C is a polarization factor and X~, and Xt-.-h a r e  

the Fourier components of the dielectric suscepti- 
bilities associated with the reciprocal-lattice vectors 
h and -h ,  respectively. The resonance parameter,/3, 
is given by 

/3 = nE(k2- k2)/2k2- nfeh. V(h.n)/k--(/3)+ /3¢, (2) 

where n = (1 + X') 1/2 is the refractive index for X-rays, 
k and kh are the wavevectors of the transmitted and 
diffracted waves in the crystal interior, with kh -" k + h 
and kh the unit vector in direction kh, and u is the 
displacement due to strain of a point in the lattice 
from its relaxed position. In the present model for 
the imperfect crystal, the defects introduce random 
fluctuations in the strain as a function of position in 
the crystal. The strain-dependent term in (2) can then 
be separated into an average term and a fluctuating 
term. The average term, together with the first term 
in (2), is written as (/3), which is a function of the 
angle of incidence of the X-ray beam. The fluctuating 
part,/3~, depends on a random variable s r, the statis- 
tical properties of which are determined below. 

The reflectance equation (1) has been solved 
numerically for strained heterostructures 

(Bensoussan, Malgrange & Sauvage-Simkin, 1987) 
but, in general, if/3 is an arbitrary function of t it is 
not possible to solve it explicitly in terms of quad- 
ratures and the elementary functions of analysis (Bell- 
man & Kalaba, 1965; Brand, 1966). However, for 
crystals, such as thin films, in which the change in 
the amplitude of the transmitted wave may be small, 
an approximate solution can be obtained by omitting 
the quadratic term in (1). This leads to a kinematic 
equation, the solution of which is 

R(t)=exp [ -i2°t i /3(t') dt' 

where it has been assumed that R(0 )=0 .  This is 
appropriate for thin films when there is no reflection 
from the substrate. Note that in the kinematic 
approximation the assumption of constant crystal 
properties across the plane at fixed t is not necessary. 

In general, (/3) is complex to take account of the 
absorption of X-rays. In the case where there is no 
absorption associated with the strain fluctuations in 
the crystal, /3e is real and the average reflectivity, 
(R'R), from an imperfect crystal is given by 

(R*R)=exp [-i2a i ((/3)-(/3)*) 

t t 

× f 
0 0  

x(exp(i2a!/3edt))dt 'dt".  (4) 

If/3e is Gaussian distributed then it can be shown 
(see, for example, Risken, 1984) that 

which involves the correlation (/3e(tl)/3e(t2)) between 
the fluctuating terms of the resonance parameter. 

The statistical properties of/3e depend on the nature 
of the defects in the crystal. It will be assumed that 
the defects are of two general types: (i) defect sur- 
faces, such as stacking faults, which will be modelled 
by surface distributions of point defects; (ii) volume 
defects, which are taken to be the crystal grains with 
lattice planes rotated through small angles relative to 
the perfect lattice. The defects are taken to be ran- 
domly distributed throughout the crystal and to cause 
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random displacements u. The two defect types will 
be incorporated into a single equation that models 
randomly oriented crystal grains bounded by surfaces 
of defects. The aim is to obtain an expression for the 
two-point correlation function required in (5). The 
models are based on continuum theory for an infinite 
homogeneous isotropic elastic body (see Eshelby, 
1956). 

Surface-defect  model 

A point defect at r' producing a spherically symmetric 
deformation induces an elastic displacement 

u(r) = ca(r-r')/ lr-r'l  3, (6) 

where ca is the strength of the defect. If there is a 
distribution of such defects, 

p(r') = Y~ c118(r'- r ,) ,  (7) 
I1 

where the sum is over defect sites located at r11 and 
8 ( ) is the Dirac delta function, then the displacement 
arising from the combined action of these defects is 

u ( r )=  ~ p ( r ' ) ( r -  r ' ) / I r -  r'[ 3 d3r '. (8) 

This has the same form as the electric field from a 
distribution of point charges. Application of the 
Gauss law yields the strain 

V .  u( r )=  47rp(r)=4zr Y, c , 8 ( r -  r11). (9) 
11 

In this model, a stacking fault or a plane of defects 
is represented by a surface distribution of point 
defects described by (7). Because the strain depends 
on the delta function in (9), the interaction between 
the X-ray beam and the point defect in the surface 
is localized at the defect site. It will be shown in a 
later section that a consequence of this point-like 
interaction is that the scattering of X-rays from the 
defect surfaces is similar to that of Huang scattering 
from point defects. Furthermore, the point-like 
behaviour will be seen to occur in the limit as a 
correlation length approaches zero. 

The imperfect crystal considered here is assumed 
to contain a large number of defect surfaces, ran- 
domly located and randomly oriented. As it propa- 
gates through the crystal, a pencil beam of diffracted 
X-rays will cross many of these surfaces and it will 
be influenced by the strains in the region about each 
crossing point. The effect of a large number of these 
surfaces at some depth t in the crystal on the intensity 
of a broad X-ray beam is obtained by taking an 
average of the effect on an ensemble of independent 
pencil beams. 

Consider then a size scale such that the defect 
surface appears locally flat and integrate over a small 
cylindrical volume of upper surface area Aa and 
infinitesimal thickness 8ta with its axis parallel to 
the unit normal ~ to the defect surface, as shown in 

Fig. 1. If the contribution from distantly located 
defects to th~ strain over this volume is taken to be 
negligible in comparison with the contribution from 
the defects within the volume, then 

V .  u(r) d V-'- [0(u- S)/Otd]Aa8td 

= [Ou/Otd]Aartd. (10) 

The last expression follows since, by arguments of 
symmetry and local flatness, the local defects produce 
a displacement 6u parallel to ~. In this case the 
component of the strain in (10) in some other direc- 
tion specified by a constant vector h is simply given 
by multiplying (10) by the direction cosine, h .  ~/h. 
Furthermore, by a change of coordinates from the 
local thickness td, which depends on the local-defect- 
surface normal, to some global coordinate t in a 
direction specified by a unit vector f~h, where t = 
td/kh ° S, the strain becomes 

^ A 

O(h" u)/Ot = [(h .  s)(kh • §)/Aa8td] 

X47r ~ c , 8 ( r -  r11) d V. (11) 
11 

The sum over the defects can be partitioned into a 
sum over the defects j within the surface and a sum 
over the defect surfaces i at a depth tai. Since the 
integration volume has an infinitesimal thickness, the 
integral in (11) becomes 

J" E c118(r-r.) dV=j" j" Y. c j a ( x - x ~ ) 8 ( y - y j ) d x  dy 
n j 

× ~ 8( td -- tdi) 8td 
i 

=AaStdcvf, 8[kh • ,~(t-- t,)], (12) 
i 

where c represents the defect strength per unit area. 
This can be thought of as the amount by which the 
lattice is displaced across the defect surface. Note 
that the change of coordinates within the delta func- 
tion has no effect unless f~h'~=0, which will be 
assumed to occur so rarely as to be negligible. The 
strain can then be written as 

^ ^ 

0(h. u)/Ot = 47rc(h. s)(kh" ~) )-', 8(t--  t,) 
i 

---47r[(e ( t))+ 8e(t)]. (13) 

Surface of 
Defects 

Fig. 1. The geometry for calculating the displacement from a 
smooth surface distribution of point defects. 
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This expression involves the local surface orientation 
and the defect-surface strength, which take random 
values throughout the crystal. The strain has been 
separated into an average term, (e(t)), and a fluctuat- 
ing term, 6e(t), where (6e(t))= 0. If the directions of 
the defect-surface normals are independent of the 
defect-surface strengths then the average becomes 

AA ( / (e(t))=((h.s)(kh.~))  c~  or(t-ti) 
i 

: ( ( h .  S)(f~h" S) )p ( t ) ,  (14) 

where p(t) is the average defect strength per unit 
volume at depth t. If the elastic displacement is 
integrated over the crystal surface, the average of p 
over the entire crystal can be related to the volume 
change of the crystal arising from the defects, 

A V : S u . d S : ~ V . u d V  
s V 

= 41r x 3 ( 1 -  ~,)/(1 + v)(p) V, (15) 

where Poisson's ratio, u, is included to take account 
of the boundary conditions for the elastic forces at 
the crystal surface (Eshelby, 1954, 1956). 

The two-point correlation for 6e(t) as a function 
of t is given by 

(6e(t)6e(t')) 

= ( c [ h .  ~( t)][f~h" S( t)] c[h" §( t')] 

X [kh" s(t ')] E E 6(t--t i)6(t '--t j))--(e) 2 
i j 

= (c2(h • ~)(f% • ,~)(h • ~')(f% • §') 

X Zi 8( t -- ti)~( t'-- ti) I 

+ c2(h • s)(kh" §)(h- §')(kh" ~') 

x ~  ~ 6 ( t - t , ) 6 ( t ' - t j ) l - ( e ) 2  , (16) 
i j # i  

where the sum has been divided into the terms for 
which j = i and those for which j # i. Note that the 
surface normals are not necessarily the same at 
different depths and are written as functions of t. In 
the term for which j = i, the sum is zero unless t '-- t, 
whereas, in the term for j ~ i, the sum is zero unless 
t ' ~  t. If these conditions are represented by delta 
functions and it is assumed that defect surfaces at 

different depths are independent then 

(Se( t)t~e( t')) 

~-6( t - t ' ) (cZ(h-  §)2(kh-~)2y., 6(t--  t')2 / 

+ [ 1 - 8 ( t - t ' ) ] (  c(h'~)(~h'~)~'8(t- i  ti)! 

( c ( h  • ~ ' ) ( k h  • ~') Y'. 6(t'-tj)l-(e)2 
J 

(17) 

Here it can be seen that the fluctuating terms are 
delta-function correlated with depth. Furthermore, it 
will be assumed that 6e is Gaussian distributed. 

V o l u m e - d e f e c t  m o d e l  

The volume defects are taken to be the randomly 
oriented crystal grains that compose the imperfect 
crystal. Each grain contains no strains other than a 
small rotation, related to the displacement by 

to=½(V xu),  (18) 

where tOk is the angle of rotation about axis k. For 
such grains, the following relations hold for all cyclic 
permutations of the indices: 

OuJ Oxi = -Oui/ Oxj = tOk, (19) 

OUx/OX = OUy/Oy = OUz/OZ = 0. (20) 

Consider, as before, a pencil beam of diffracting 
radiation propagatin~ in a direction specified by the 
constant unit vector kh. Then the gradient along this 
direction of the component of the displacement, h • u, 
where h is a constant vector, is given by 

(kh" V)(h.  u) = Ouy/Ox(k"hxhy - k"hyhx) 

+ Ouz/Oy(fchyhz - khzhy) 
A A 

+ Oux/OZ(khzhx - khxhz) 
^ 

=oo • (kh ×h). (21) 

Let the shape of the ith crystal grain be specified by 
S~(r), where Si(r) = 1 if r represents an interior point 
of the grain and S~(r)= 0 if r represents an exterior 
point and let oo~ be the rotation vector for this grain. 
The rotation vector in (21) can then be represented 
by a sum over the crystal grains, 

to(r) = Y~ toiSi(r). (22) 
i 
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The gradient of (21) in the direction of kh is then 

( k h "  V ) [ k h  ° V (  h °  U ) ]  
^ ^ 

= Y, [(kh" tOi)(kh X h)-  VS,(r) 
i 

+kh'(khXh)x(VS,(r)xto,)] .  (23) 

The pencil beam of X-rays, with a small cross 
section, will sample a subset of all the grains in the 
crystal so that the sum over the i grains in (23) can 
be replaced by a sum over the subset of n grains that 
are intercepted by the beam. The coordinate r can 
also be replaced by the position t that measures 
distances in the crystal along the path of the X-ray 
beam. Furthermore, the gradients of S,(r) are zero 
in both the interior and the exterior of grain n and 
become infinite at the grain boundary. If t + represents 
the location of the upper boundary of grain n and 
^ +  
s,  represents the outwardly directed unit normal to 
the upper surface and t~ and ~ are the corresponding 
parameters for the lower boundary then the gradients 
of S, (r) can be replaced by these normal vectors and 
by delta functions that locate the two g~in  surfaces 
intercepted by the X-ray beam. Since kh" V =a/at, 
(23) becomes 

a 2 / a t 2 [ h  • u ( t ) ]  = - 

+ 

/1 

+ 

-=(e 

[(kn • to,)(kh ×h) "s,,"+ 
n 

L," (L, xh) x (~+ x ~,,)] ,~(t-  t~) 
A A A - -  

[(kh" ¢o,)(kh xh) "s,, 
?1 

f~h" (L, xh) x ( ~  x ~ ° ) ] ~ ( t -  t~) 
[12(to,, §+)6( t -  t +) 

12(to,, ~)6(  t -  t~)] 

(t))+6e(t). (24) 

Here the terms involving the scalar and vector 
products have been represented by 12. As with sur- 
faces of point defects, the expression for the displace- 
ments associated with the crystal grains has been 
separated into an average term and a fluctuating term. 
These terms depend on the locations of the grain 
boundaries, the directions of the surface normals of 
the grains and the grain orientations, all of which 
take random values throughout the crystal, The direc- 
tion from which the rotations of the crystal grains are 
reckoned is arbitrary and for convenience it is chosen 
so that the average term in (24) is zero, i.e. (e )=  0. 

The derivation of the correlations of the fluctuating 
terms proceeds along similar lines to that for defect 
surfaces. The correlations between 6e(t) and 6e(t') 
can be obtained from (24) and involve the products 
of two sums over n and m. As in (16), these can be 
separated into terms for which m - - n  and those for 
which m ~ n. The m = n term is zero unless t '=  t. This 
condition can be represented by a delta function. 

However, care is required in treating the term for 
which m # n because there is a correlation between 
adjacent crystal grains that share a common boun- 
dary. To take account of this, let the grains be num- 
bered consecutively with the crossings of the pencil 
beam and further separate the sums into terms involv- 
ing adjacent boundaries. The correlation can then be 
written in the form 

(6e( t)6e( t')) = <~ 12(¢0,,, ~+)28( t -  t+)8( t ' -  t +) > 

+ < ~  12(°J,,s~)2t~(t- t~)t~(t'- t~)) 

, s.)12(~.+,, ~:+,) 

X t~( t -  t+l~( t ' -  t~+,) > 

+ <~ 12(,,,., ~:)a(,,,._,, L+_,) 

+> x 6 ( t -  t~-)6(t '-  t,,_,) , (25) 

where the double sum has been split into terms involv- 
ing the same boundary, adjacent boundaries and non- 
connected boundaries. The latter has not been shown 
in (25) because it averages to zero since non- 
connected boundaries are independent. The surface 
normals and the locations of adjacent grain bound- 

^ +  __~-- ..t- aries are related by s, = n+l and t, = t#+l. From 
(24) it follows that 

12(to,,+,,~+,) = 12( t~ ,+ , , -~+)=-12(~ ,+ , ,~+) .  (26) 

With the use of (26) and the fact that the sums are 
zero unless t ' =  t, the correlation takes the form 

(t~e( t)6e( t')> 

= 6(t- t') (~ 12(ee,,, ~+) 

12 (to.+,, ~+)]8( t -  t +) > x [12(tOn, ~+) 

8( t -  t') (~, a(ee., ~-~) + 
\ .  

x [o (o~., ~ ) -  o (o~._,, ~ ) ] 8 ( t -  t:) >. (27) 

Since the grain boundaries are taken as discontinuous 
and independent, the fluctuation 6e is delta-function 
correlated with position and, as before, it is assumed 
to be Gaussian distributed. The effect on the intensity 
of a broad X-ray beam diffracted from many mis- 
oriented crystal grains is obtained by averaging the 
effect on an ensemble of independent pencil beams. 
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Imperfect crystals 

The imperfections considered here are a combination 
of misoriented crystal grains and defect surfaces. In 
general, the crystal-grain boundaries will coincide 
with the defect surfaces and the two defect types will 
be correlated. Because the forms of the defect 
equations are similar, each depending on a Gaussian- 
distributed delta-function-correlated random vari- 
able, the model for the imperfect crystal is obtained 
by a linear combination of (13) and (24). Note that, 
over a length scale l in a crystal grain that has been 
rotated by to, the lattice points have relative displace- 
ments of lltol . This means that the displacements 
arising from small rotations of crystal grains are corre- 
lated over distances scaled by I. The quantity lifo] 
may be thought of as the strength of the defect and 
it is similar to the point-defect strength per unit 
area, c, which gives the displacement across an 
infinitesimally thick defect surface. Bearing this in 
mind and remembering that/3~ is the fluctuating part 
of (n/k)O(h.  u)/at, one can write the linear combina- 
tion of (13) and (24) as 

I d/dt[/3c:(t)]+ /3¢(t)=tr¢(t), (28) 

which is a first-order differential equation involving 
the stochastic variable s ~. The parameter I is a correla- 
tion length and or is the sum of the root-mean-square 
deviations from the means of the defect strengths, 
including the geometric factors [see (17) and (27)]. 
Equation (28) is a Langevin equation (Van Kampen 
1976; Risken, 1984), which is usually associated with 
the study of Brownian motion (see, for example, 
Uhlenbeck & Ornstein, 1930). 

The correlation function for/3¢ is derived from the 
solution of (28) by using the fact that ~: is delta- 
function correlated, which yields 

( /3¢(t) /3¢(t+r))=(trE/21)exp(- lr l / l ) ,  (29) 

where a transient term has been omitted, leaving the 
stationary correlation that only depends on the rela- 
tive positions, z. Substitution of (29) into (5) with 
z = t ' -  t" gives 

(exp ( i 2 a  !/3¢ d t ) )  

=exp {-2a2tr21[lrl/l+exp ( - I ~ l / l ) -  1]} 

co 

--(1/2zr) ~ 7(K)exp(--iKZ)dK, (30) 
--OO 

which defines the Fourier transform of a function 
y(K). When this is substituted into (4), the double 
integral can be separated into a product of two 

integrals that are complex conjugates, 

( R ' R ) =  I dK[y(K)/2~] exp - i 2 a  (/3)dt' 
- - co  0 

{ ( '  x exp i2a I(/3)* dt' - iax*( t")  
0 0 

= I [~ ' (K)/2=]IR(2~(/3)-K)I  2dK- (31) 

Equations (31) give the result that the average reflec- 
tivity of the imperfect crystal is a convolution of the 
reflectivity of a perfect crystal with the function y(K), 
where the perfect-crystal reflectivity depends on the 
average parameter (/3). The effects of non-random 
strains, such as might be encountered in strained-layer 
superlattices, and the average of the strains arising 
from the defects are included in the perfect-crystal 
rocking curve and the effects of the random fluctua- 
ting strains are introduced through y(K). 

Note that the result (31) and definition of y(K), 
through the Fourier transform of the phase term on 
the left side of (30), are independent of the defect 
model. The only requirements are that the kinematic 
solution (3) is valid and that the defect correlations 
are stationary, i.e. depend only on r. The defect model 
with the assumption of Gaussian-distributed defects 
is required to relate the defect parameters, 1 and tr, 
to T(K) via (30). 

To obtain T(K ) explicitly requires the Fourier inver- 
sion of (30) and involves incomplete gamma func- 
tions. Of greater interest is the inversion of (30) in 
the limit of very large crystal grains, l ~ oo, and point- 
like defects, 1~0. In the following discussion it is 
useful to note that the kinematic reflectivity for an 
infinitely thick perfect crystal is a delta function at 
the Bragg angle, 

[R(2a(/3)--K)IE+8(2a(/3)--K), (32) 

so that, if K is replaced by 2a(/3) in the function 7(K) 
in (31), the kinematic reflectivity for an infinitely thick 
imperfect crystal is obtained. 

For large crystal grains the exponent in (30) is 
expanded to second order in r/l ,  yielding 

- 2a 2orE l[I r l / I  + exp ( - [ r l / I )  - 1 ] 

= 2aEcrEl(lr[/I+ 1 - [ r l / l+r2 /212-1)  

= - 2 a  2(cr2/21) r2. (33) 

If this approximation is substituted in (30), with K 
replaced by 2a(/3), the inverse transform gives the 
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reflectivity, 

(R*R)~ y(Za(fl)) 
=½(~r/432o2) 1/2 exp (-(fl)2/2o2), (34) 

where o 2= 0r2/21 is the variance of the distribution 
of the/3~ terms. The rocking curve described by (34) 
is a Gaussian curve. This merely echoes the fact that 
each infinitely thick crystal grain has an orientation 
that is selected from a Gaussian distribution, which 
was assumed in the derivation of (30). For a finite 
crystal, the perfect-crystal reflectance is convolved 
with this Gaussian distribution, with K/2a replacing 
(/3). 

For point-like defects, l ~ 0 so that 

-2a2o'21[Irl/l+exp ( -  I r l / / ) -  1]~ -23=~21rl (35) 

and the reflectivity of the infinite crystal takes the form 

(R*R)~ y(2a(fl))=tr2/(a2o'4+(fl)2). (36) 

This is a Lorentzian function that exhibits the 1//32 
dependence found in the diffuse intensity for Huang 
scattering from point defects (Huang, 1947). The simi- 
larity is expected since both Huang scattering and 
the surface-defect model described here are based on 
the spherically symmetric deformation given by (6). 
The form of the phase term obtained from (30) with 
the approximation (35) is the same as that chosen by 
Becker & A1 Haddad (1989, 1990) in their statistical 
dynamical theory for purely mosaic crystals. 

For nonzero but finite correlation lengths, the per- 
fect-crystal rocking curves are convolved with the 
function y(K) which, on the basis of the previous 
discussion, will have a form that lies somewhere 
between a Gaussian and a Lorentzian function. This 
correlation function changes between these two 
extremes as the correlation length l is varied. 

Discussion 

The present description of the defects in crystals, 
based on continuum theory, contains many approxi- 
mations and assumptions. The random properties of 
the crystal are assumed to be stationary, i.e. indepen- 
dent of depth in the crystal, and Gaussian distributed 
at each plane for given t. While somewhat restrictive, 
these assumptions should be valid in many crystals, 
particularly thin films grown by metal organic 
chemical vapour deposition or molecular beam epi- 
taxy, where many aspects of the growth procedures, 
such as lattice mismatches or thermal-expansion 
differences between the substrates and the thin films, 
introduce imperfections that lead to disorder 
throughout the film (see, for example, Liaw, Chou & 
Chang, 1990). 

A number of assumptions were involved in the 
calculation of the strains from defect surfaces; these 
could break down for strong and closely spaced 

defects. For example, in deriving (10) it was assumed 
that the local defects produce a displacement parallel 
to the defect-surface normal ,~. For a severely distorted 
defect surface this may not be the case. However, this 
will only alter the relationships between h, k, ~ and 
the defect strength parameter o- and it will not alter 
(28), which forms the basis of the correlation function 
for the defect model. 

The Takagi-Taupin equations are approximations 
in themselves, where second- and higher-order terms 
have been neglected. In particular, the strain gradient 
should satisfy [Takagi (1969), equation (93)] 

nlV2(h .u)l/k--d/3eldt=cr/l<< lx'hl/,~. (37) 
This condition will be satisfied for all but extremely 
distorted crystals. 

The X-ray beam is treated as an ensemble of non- 
interfering pencil beams with well defined propaga- 
tion directions, which implies that the X-rays are 
plane waves. The assumption of a well defined propa- 
gation direction of the diffracting beam, kh, relative 
to the lattice suggests that the model does not treat 
X-rays that scatter from the defects into other direc- 
tions. However, a change in the propagation direction 
of an X-ray through an angle 80 relative to the perfect 
lattice is equivalent to an X-ray crossing into a crystal 
grain with a tilt -80,  where 80 is small (Fig. 2). The 
defect model accounts for this, but now the correla- 
tion length l must be interpreted as a length scale 
between the changes of direction of an X-ray beam 

A '  , /  

h 
j t / 

g I . . s  'v  

\gO 

kh 

A 

kh* 

(a) 

h' 
A 

kh 

(b) 

Fig. 2. The equivalence between (a) an X-ray scattered through 
a small angle 80 at a defect and (b) an X-ray entering a grain 
rotated by -80. The angle has been exaggerated for clarity. 
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relative to the local lattice vector. It then gives a 
measure of the crystal-grain size or the distance 
between points in the crystal that scatter the X-rays. 

It is likely that the major influence on this model 
is the kinematic assumption, which will fail for thicker 
films when the extinction of the transmitted beam is 
important. This means that the reflectance becomes 
large and the quadratic term in (1) cannot be neglec- 
ted. In such instances, dynamical models (Kato, 1980; 
Becker & A1 Haddad, 1990; Davis, 1991) must be 
used. 

Concluding remarks 

A stochastic model for crystal defects has been 
developed that leads to a correlation function that is 
used to calculate the reflectivity of imperfect crystals 
containing defect planes and crystal grains. A solution 
for the kinematical reflectivity has been given involv- 
ing a convolution between the perfect-crystal reflec- 
tivity and a function depending on two parameters 
related to the crystal defects. This function takes the 
limiting form of a Gaussian or a Lorentzian function 
depending on a correlation length. In a subsequent 
paper, the fit of this kinematic solution to experi- 
mental data will be discussed. The defect model has 
been incorporated previously in a model for dynami- 
cal X-ray diffraction that loads to a partial differential 
equation for a probability density describing the crys- 
tal reflectance (Davis, 1991). 
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Abstract 

Five basic cubic packings of symmetry-related cylin- 
ders are described. Four are stable packings and two 
were described by O'Keeffe & Andersson [Acta Cryst. 
(1977). A33, 914-923]. The possible symmetries of 
rods that can replace the cylinders in crystal structures 
are identified. Replacing cylinders by bundles of 
cylinders produces a total of 23 cubic cylinder pack- 
ings, of which 18 are stable. 

Introduction 

The study of packings of objects such as spheres or 
polyhedra (representing atoms or groups of atoms) 

0108-7673/92/060879-06506.00 

has played an essential role in descriptive crystal 
chemistry for a long time. More recently, packings 
of cylinders (representing rods of atoms) have been 
used similarly. Some cylinder p~tckings and their 
applications to crystal chemistry were described by 
O'Keeffe & Andersson (1977) - hereinafter O K A -  
who described eight packings. The term cylinder 
packing is used here to refer to infinite packings of 
cylinders in which every cylinder is related to all the 
others by crystallographic symmetry operations. Two 
cubic packings were found to be particularly useful 
in descriptive crystal chemistry when the cylinders 
were replaced by rods of atoms. These packings were 
referred to as 'body-centered cubic rod packing' and 
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